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We consider the problem of decoherence and relaxation of open bosonic quantum systems from a perspec-
tive alternative to the standard master equation or quantum trajectories approaches. Our method is based on the
dynamics of expectation values of observables evaluated in a coherent state representation. We examine a
model of a quantum nonlinear oscillator with a density-density interaction with a collection of environmental
oscillators at finite temperature. We derive the exact solution for dynamics of observables and demonstrate a

consistent perturbation approach.
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I. INTRODUCTION

When a small quantum system interacts with an environ-
ment it undergoes irreversible processes such as relaxation
and decoherence. Environment-induced decoherence is at the
heart of the quantum-classical transition [1,2]. Classicality is
an emergent property induced on subsystems by their envi-
ronment. Under a variety of conditions, which are particu-
larly easy to satisfy for macroscopic objects, decoherence
leads to the selection of a small subset of quasiclassical states
from within the huge Hilbert space.

The dynamics of decoherence and relaxation in open
quantum systems is usually studied with the help of the mas-
ter equation for the reduced density matrix p of the system
[3], or by means of any of its possible unravellings [4], in-
cluding continuous quantum measurement and quantum tra-
jectories [5-9]. It is also possible to study the decoherence
process in terms of phase-space densities, especially used in
the field of quantum optics [10]. In this context one ex-
presses the density operator p of a harmonic oscillator (one
mode of the electromagnetic field) in terms of a c-number
function of a coherent state (complex) variable a. Particu-
larly useful distributions are (a) The Q-function, Q(a,a”)
=(1/m){alp|), that allows the calculation of antinormally
ordered quantum expectation values in terms of simple mo-
ments of Q(e, a”); (b) The P-function, P(a, "), defined via
p=Jd*aP(a,a’)|a){a|, whose moments give normally or-
dered quantum expectation values; and (c) the Wigner func-
tion W(a, "), whose moments are equal to the expectation
values of symmetrically ordered products of creation and an-
nihilation operators. These phase-space distributions have
certain drawbacks. For example, they may not be positive-
definite, or may make no sense for certain density matrices.
It may be difficult to extract physical information from these
quasiprobability distributions, especially in the context of
nonlinear open quantum systems.

The aim of this paper is to introduce an alternative ap-
proach based on c-number dynamical equations for expecta-
tion values of observables of open bosonic quantum systems.
The method is a generalization of the well-studied
asymptotic theory for bosonic closed quantum systems [11]
to the case of open dynamics. Such an approach provides a
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method to derive exact, c-number, partial differential equa-
tions (PDEs) describing the evolution of quantum averages
evaluated in coherent states. In this sense the method is re-
lated to the phase-space distributions discussed in the above
paragraph, but has the key feature of dealing directly with
expectation values rather than with the quantum state p. This
change of focus has several advantages. First, the physical
interpretation of the results is clearer, and one does not need
to compute integrals over moments to obtain physical quan-
tities, which is especially difficult in the quasiclassical re-
gime of parameters due to fast oscillations. Second, the dif-
ferential equations are well behaved in the quasiclassical
limit #/N— 0, where N is a quasiclassical parameter of the
system, and lead to asymptotic Laplace-type expansions
[12]. The crucial property of Laplace asymptotics is that ob-
servable quantities are exponentially localized in phase space
around coherent states, and do not have the standard oscilla-
tory WKB behavior [13]. Third, it provides a simpler inter-
pretation of singularities (in the sense of perturbation theory
of partial differential equations [11]) that appear in the qua-
siclassical regime for nonlinear Hamiltonians, allowing one
to distinguish which part of the singularity is connected with
measurable physical phenomena, and which is connected just
with the choice of representation.

As a prototypical system we consider the dynamics of a
quantum nonlinear oscillator (QNO),

Hs=thod'd+ uh?(a'a)?, (1)

interacting with a bath of linear oscillators initially in ther-
mal equilibrium. Here 4 (4") are annihilation (creation)
bosonic operators, w is the linear frequency, and w is the
parameter of nonlinearity. The QNO is initially prepared in a
coherent state |a) in the quasiclassical region of parameters.
The quasiclassical parameter is #/J<<1, where J=%|a|? is
the action of the linear classical oscillator. The nonlinear
harmonic oscillator Hamiltonian, Eq. (1), may describe a
Bose-Einstein condensate (BEC) treated in the single-mode
approximation. Such an approximation is valid when the
many-body interactions within the condensate produce a
small modification of the ground state of the trap, the mode
structure being sparce, such as in tightly optically trapped
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systems. For BECs trapped in optical lattices, the single-
mode approximation leads to predictions for the quantum
dynamics of the condensate in excellent agreement with ex-
periments [14,15]. Other systems that can be described by
this Hamiltonian are micro- [16] and nanomechanical [17]
resonators in the nonlinear regime, and nonlinear optical sys-
tems, among others.

The quantum and the classical dynamics of the anhar-
monic oscillator was studied in detail in Ref. [19] using the
O phase-space distribution of the system. It was shown that
the presence of nonpositive-definite second-order terms in
the quantum evolution of Q, not present in the evolution of
the classical probability distribution, is responsible for quan-
tum recurrences and prevents the appearance of fine-scale-
structure “whorls” predicted in the classical description. In
Refs. [20,21], the interaction of the nonlinear oscillator with
an environment (modeled by a thermal bath of harmonic
oscillators with position-position coupling to the system o0s-
cillator) was studied in the limit of small nonlinearity using
the Q function formalism, and it was argued that such an
interaction was effective in destroying quantum interference
effects and restoring the classical phase-space structure.
However, as recently shown by some of us in Ref. [18] by
means of solving the master equation for the reduced density
matrix of the system, environment-induced decoherence is in
fact ineffective in recovering the quantum-classical corre-
spondence for this nonlinear system: Some quantum effects
may survive the decoherence process, and be observed for
times much larger than the decoherence time scale. In par-
ticular, we showed that the Ehrenfest time tz=(2Au|a|)7!,
which characterizes the departure of quantum dynamics for
observables from the corresponding classical dynamics, can
be observed for times much longer than the decoherence
time scale.

The paper is organized as follows: In Sec. II we consider
a model of phase decoherence that is exactly solvable, and
will be used to exemplify our method based on the coherent
state representation for observable values of open bosonic
quantum systems, that we describe in Sec. III. This section
contains the main results of this paper: The general theory
proposed in this paper is first described, and it is then applied
to the case of the nonlinear oscillator, presenting both exact
and perturbative treatments. Finally, Sec. IV contains our
conclusions and briefly discusses possible extensions of this
work.

II. MODEL FOR PHASE DECOHERENCE
IN THE NONLINEAR OSCILLATOR

In this section we consider the model of phase decoher-
ence in the nonlinear oscillator, that allows for an exact so-
lution for the reduced dynamics of the system. This model
will serve us for ease of presentation of the general theory of
dynamics of open bosonic quantum systems in coherent state
representation that will be described in the next section. The
interaction between the nonlinear oscillator and the thermal
bath of harmonic oscillators with Hamiltonian

N
j=1

is of the density-density type
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N
IA{im = E gjaATdB;bAj (3)
J

Here l;j (l;]') are annihilation (creation) operators of the en-
vironment, w; are the frequencies of the environmental har-
monic oscillators, g; are coupling constants, and N is the
total number of the oscillators in the environment. This
model of decoherence can be used as an approximate de-
scription for the collisional effects between an ultracold
atomic gas and its thermal cloud [22,23]. Indeed, for low
enough temperatures, phase decoherence (corresponding to
density-density types of interactions, i.e., elastic two-body
collisions that conserve the total number of condensed par-
ticles) dominate over amplitude decoherence processes (that
correspond to position-position coupling, i.e., inelastic two-
body processes that either feed or deplete the condensate).
The joint system-environment dynamics can be exactly
solved in the Fock basis. Let us assume that the initial joint
state is uncorrelated, i.e., p,(0)=p(0)® pg(0). The initial
state of the system is assumed to be a pure coherent state
p(0)=|a)(a|, and the initial state of the environment is as-

sumed to be a thermal state pp=Z;'e "7, where

Zp=Tr e HE/*8T] is the partition function of the environ-
ment. Here T is the temperature of the bath, and kg is Bolt-
zmann constant. The joint density matrix at time ¢ can be
easily computed in the number representation since both the
system, the environment, and the interaction Hamiltonians
are diagonal in that basis. The result is

e}

ptot(t) — E anal’:,e—it[w(n—n')+;Lh(n2_n12)]|n><nr|

’
n,n'=0

N ¢}
®ZElH 2 e—[fiwjﬂ(j)]/kBTe—[(igjr)/h](n—n/)M(i)
j=1 #U)=0

X[ D) ().

Here a,=¢1"2a7"/ \n! are the expansion coefficients of the
coherent state |@) in the Fock basis.

Tracing over the environmental degrees of freedom it is
easy to find the reduced density matrix for the nonlinear
oscillator p(¢), and calculate any expectation value of a sys-
tem operator. In particular, the evolution of the coherent state
amplitude is given by

(a(1)) = a(t)R(1), 4)

where a(r) is the solution without coupling to the environ-
ment, namely

a(t) = ae™ M expl|al (e~ 1)], (5)

and R(#)=II;R(1) is the decoherence factor, which contains
the effects due to the environment. Each R; can be written in
terms of its modulus and phase, Rj(t)=|Rj(t)|e”*"j(’), where

1 — o~ hep/ligT)

26—(ﬁa)j)/(kBT) Cos(gjt/h) + e—(2ﬁwj)/(kBT) ’

R(1n)|=
)= ==
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e~ )/ kD) gin(g t1h)
| — ¢~ (kD) cos(g;t/h)

(6)

tan (1) =~

The coherent amplitude a(r) departs from the classical solu-
tion on the Ehrenfest time scale 7z=1/27%u|a|, and undergoes
collapses and revivals, the revival time being tz=m/fiu [18].
The effect of the environment is to produce a dephasing of
the coherent state amplitude a(f), causing it to decay to zero
in the limit of a large environment (N> 1), and killing the
revivals. For finite N, the decay is incomplete and the reviv-
als are suppressed. In the special case of identical environ-
mental oscillators (g;=g and w;= wy for all j), the decoher-
ence factor R(f) can be approximated in the limit of large N
by a periodic Gaussian structure. Each Gaussian R,,(t) is cen-
tered around a time t,=27hip/g (p=0,1,2,...) and has the
form

gzN(t _ tp)z e—(ﬁwE)/(kBT)

2h2 [1 _ e—(ﬁwE)/(kBT)]Z .

R, (1) =exp| -

III. COHERENT STATE REPRESENTATION

There are several ways of considering the dynamical be-
havior of quantum expectation values. One possibility is to
solve the Heisenberg equation for the density matrix in some
basis states and then take expectation values of the corre-
sponding operators, as done in the previous section. For gen-
eral nonlinear Hamiltonians this approach leads, in the qua-
siclassical asymptotic limit, to a singular behavior (in the
sense of perturbation theory of partial differential equation)
[11]. Instead, it is possible to write down exact, c-number
partial differential equations for expectation values, which
allows one to distinguish which part of this singularity is
connected with measurable physical phenomena, and which
is connected just with the choice of representation. This
method is described extensively in Ref. [11] for closed
bosonic quantum systems, and it is based on computing
quantum observables in the coherent state basis. In the fol-
lowing we briefly review the methodology for this case, and
then we generalize it to open systems, i.e., quantum systems
in interaction with an external environment.

A. Closed systems

In this subsection we exemplify the methodology of co-
herent state representation for closed systems using the non-
linear oscillator described with the Hamiltonian Eq. (1).
Similar ideas can be applied to any quantum boson and spin
systems, as described in Ref. [11]. Given an arbitrary
operator of the system fs=fs(a',d), it is possible to
write down an exact, c-number partial differential equation
for the time-dependent expectation value
fola®, a,t)=(a|e™s""f Hs!| o) of such operator evaluated
in coherent states |a). Using Heisenberg equation
dfsldi=(i/h)[Hg.fs), it follows
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fs= ;;((a|ﬁsfs|a>—<a|fsl‘}s|a>)~ (7)

Putting both Hg and f s into normal-ordering form in terms of
the initial operators 4=d(r=0) and a"=4"(t=0), it is pos-
sible to obtain a closed form for each of the two terms in Eq.
(7). One obtains

A . 0
(=o' 2|t

(alfsHs|a) = e_a2H5<a’i>fSela2- (8)
da

Here f¢=f(r) is the c-number expectation value we seek,
and the differential operator Hg has the same functional form

of the normal-ordered operator function H s(a’,a), but with
the substitution d¢" — &, and @ — d/da”. Therefore, the exact
partial differential equation for the time-dependent expecta-
tion value f4(r) reads

Ifs _»
— =Kfs, 9

o = Ksls )
with initial value f(0)=fs(a", @), and the partial differential

operator ks given by
A i 2 J J 2
Ko=—¢ld H( *,—*>—H< —) (10
§ ﬁe { s\ @ da s\ da ¢ (10)

This operator can be split into two parts: K S:IA(C1+hIA(q. The

first operator IA(CI includes only first order derivatives and
describes the corresponding classical limit, while the second
operator IA(q includes higher order derivatives and is respon-
sible for quantum effects. For the model described by Eq. (1)
the exact partial differential equation for observables reads

J J
w AT fS
o

s ( x
—=i(w+hu+2h 2
P (w+hu ulal?) @ p

=)
+ih V5 -5 |fs- 11
i M((CV ) Aa? o fs (1
In particular, for fs=&, the evolution of fg(f) corresponds to
the evolution of the coherent amplitude a(t)=(a|d(t)|a), and

the solution is the same as in Eq. (5).

B. Open systems: Exact treatment

In order to extend the formalism to treat open quantum
systems, we assume that the system, initially populated in a
coherent state |a>, interacts with the bath of harmonic oscil-

lators, also initially populated in coherent states {|3;)}. Let f
be any operator of the composite system

F=1@"(0),a(0 b (0}.4b,(0}) (12)

that evolves according to the Heisenberg equation df/dt
=(i/h)[H,f], where H=Hg+H+H,, is the Hamiltonian of
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the composite system. The initial state is |\f’(0))=|a,{,8j}).
The expectation value f(r) of the operator £(7) in the state
|‘IAf(O)>, evolves according to the partial differential equation

i

ot (13)
where IA( is the differential operator,

o — i —|01\ =318 ’ )
K= gl [ ( {03 }
( {,3,} Ja {£}>]ealz+2f|ﬁf2. (14)
J

Note that the following substitutions have been used: a'
—a’, d—dl(da"), buﬂ and b, j— 1 (3;). For the model
under consideration, the c- number d1fferent1al equation for
the composite (system+bath) expectation value f(¢) has the
form

o (Ko+ K+ Kin)f- (15)

The first two terms in Eq. (15) correspond to the free system-
bath dynamics,

K f=i(w+ uh +2,uﬁ|a|2)(a*ai* - a%)f
&+
29
+l,uh{(a) &(a*)2—a &az]f’ (16)
Kuf = zEw( aﬂ Bjaﬁj)f (17)

and the last term in Eq. (15) is due to the system-bath inter-
action. It can be written as the sum of three contributions

Ky f= KV + K2+ K9 f, where

nt nt nt

——(Eg,|ﬁ,|2)( wLeal)y

Ja
Knf ——| IZE ( -B - )f
o g} &j ]O,)B]

o L N
Kinf = Eg,( i aaﬂ,aﬂ)f

Given a solution f(a,a” ABj}. {ﬁ };1) to Eq. (15), we finally
have to trace over the coherent states {3}, {,8 } (i.e., trace
over the environment) to obtain the evolution of expectation
values of the system.

In the above we have assumed that initially each jth en-
vironmental oscillator is in a pure coherent state |3;). Let us
now consider the case in which each environmental oscilla-
tor is initially in a mixed, thermal state at temperature 7.
Since the oscillators in the environment are noninteracting,
the initial density matrix of the environment can be written
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as a direct product over individual dens1ty matrices for each
jth subenvironment, that is, pz(0)= HJ 1pl(:_’)(O) The dens1ty
matrix of each environmental oscillator is then p (0)
:(Zg)) exp(~fiw, bTb i/ kgT), where Z(’ =Tre” hajb] iLikeT] g
the partition functlon of the jth env1r0nrnental oscillator. This
mixed thermal state pg)(O) can be written in the coherent
state basis (this corresponds to the so-called P-representation
or coherent state representation [24]),

P](Ei)(o):fdzﬁjp(ﬂj’ﬁj)LBjXBj > (18)

where the probability distribution for each g; is given by

* L s,
P(B;.B) = w_r_zje |Bl"/m; (19)
Here i7;=(e"*/*8"~1)~" is the Bose distribution. That is, the
coherent state representation of a thermal state has a Gauss-
ian distribution.

For the particular case of the system oscillator initially
prepared in a coherent state, we would like the solution to
Eq. (15) to lead us to Eq. (4), once the integration over the
environmental variables is performed. Since the structure of
Eq. (4) is the product of the free evolution solution «(z)
times a time-dependent factor that arises from the coupling
with the environment, we propose a solution to Eq. (15) of
the form

fla.a" {B}AB}it) = fulana”:0)f({B}AB 1), (20)

where f,=a(t) is given by Eq. (5). The reduced dynamics of
an observable of the system will be given by an average over
the environmental oscillators weighted by their respective
probability distributions

fs() = a(?) f Hdzﬂjp(lgj7ﬂj)fﬁ(t)' (21)
J

The initial condition for f4(z) is f4(t=0)=1. Since P(Bj-, B;)
depends on B; through its modulus squared, we can assume,
without loss of generality, that at any time # the function f ()
depends on |B;* [any other dependency, like ,Bk(ﬂ )’" (k
# m), vanishes upon integration]. This implies that the op-
erator kﬂ acts on fjz as IA(pr,:O. Given that fa=f(afa, the
equation for fj finally reads

Fa= 12 Kindf of 5- (22)

As can be shown by direct inspection, an exact solution to
this equation, with initial condition f4(r=0)=1, is

Fo0) =115 =11 expl- |8 (1 -], (23)
J J

Integrating upon the probability distributions P(|Bj|2) we ob-
tain the reduced dynamics for the observable of the system
oscillator, namely
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fs0=a]l J IBP(BIPIY = aR(),  (24)
J

where R(7)=IL;R;(#) is given in Eq. (6). This expression co-
incides with the exact solution derived in Eq. (4), obtained
from solving the Heisenberg equation for the density matrix
of the joint quantum nonlinear oscillator-environment sys-
tem. Therefore, using our method based on the coherent state
representation for observable values for open bosonic quan-
tum systems, we can recover the exact reduced dynamics.

C. Open systems: Perturbative treatment

There are a few models of decoherence and relaxation for
which it is possible to solve exactly the joint system-
environment dynamics, and to write down and solve an exact
master equation for the reduced density matrix of the system.
Examples are the one considered in Sec. II, which can be
trivially solved in the number representation, and the well-
known quantum Brownian motion model, in which a linear
oscillator [#=0 in Eq. (1)] is coupled through position to a
bath of linear harmonic oscillators. This latter model can be
solved using, for example, influence functional techniques
[25] thanks to the fact that the system, the bath, and the
interaction Hamiltonians are quadratic forms. For other gen-
eral models of decoherence and relaxation, and in particular
for nonlinear open quantum systems [for example, the non-
linear oscillator of Eq. (1) coupled via position to the bath of
linear oscillators], there are no known exact solutions. In
those cases it is customary to use different approximation
methods, such as a perturbative expansion in powers of the

interaction Hamiltonian I:Iim (Born approximation), and,
when applicable, the Markovian approximation (memoryless
environment) [10].

The model considered in the previous sections (the non-
linear oscillator coupled via density with the bath of linear
oscillators) affords an exact solution due to the simplifying
property that all terms in the Hamiltonian are diagonal in the
joint (system+bath) number basis. In order to show how to
deal with exact PDEs for observables in generic bosonic
open quantum systems that do not have exact solutions-, we
will now solve Eq. (15) for this model considered in a per-

turbative expansion in powers of I:Iim, and compare the re-
sults with the exact solution previously found. The study of
other nonlinear models will be left for a future publication.
The perturbative master equation for the reduced density
matrix of the quantum nonlinear oscillator is, to second order
in H;

nt>

%p =—i[(w+ dw)i + uhi’, p] + ty(2ipi — i*p — pi?),

where 7i=d"a is the number operator for the system. The first
term is the free unitary evolution with an environment-
renormalized frequency dw=(1/%)2;g(i1;), that arises from
first-order perturbation theory. The second term is of Lind-
blad form (but with a time-dependent coefficient); it arises
from second-order perturbation theory, and it is responsible
for decoherence. The coefficient 7y is given by 7y
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:(1/ﬁ2)2jg12-[<ﬁ12->—<ﬁj>2], where 7; is the number operator

for the jth oscillator in the environment. The perturbative
treatment in powers of I:Iim is in fact a perturbative treatment
valid for short times (¢/7)(1)2;g{i1;)<<1. The solution of
this approximate master equation can be straightforwardly
found in the Fock basis, and from there one can evaluate the
dynamics for the coherent state amplitude

(G(1)) = e P10 o 1), (25)

We see that the coherent state amplitude has an initial qua-
dratic time decay, typical of quantum systems subjected to
perturbations. As expected, this perturbative solution is the
same as that obtained from the exact solution presented in
Eq. (4). Indeed, for short times the modulus and amplitude of
each decoherence factor Rj(t) can be written as

22
RO~ 1= S50 - (3,2,

P == %@,} (26)

Therefore, the total decoherence coefficient is given by
R(1) =[1=y2/2]e 0 =~ ¢~ 727131 that coincides with the
solution of the perturbative master equation.

We now turn to find the perturbative solution to the exact
PDE for observable values, Eq. (15). Inspired in the solution
above, we again propose a solution of the form f(z)
=fo(O)f (1), with f(1)=a(). Let us take a perturbative ex-
pansion of f4(7) in powers of the small parameter € of the
form

fo=f8 +fg+ (27)

where f}o ) is independent of e, f“) is linear in €, etc. Given
the initial condition fz(r=0)=1, then fi;) )=1. The first-order
equation is

13 = o Kol . (28)

whose solution reads fg )=—irs i&,|B;|>. Therefore, to first or-
der we obtain

it . 2
Fo0 = 1= g |Bf ~ e MEIAE(29)
J

Integrating upon the probability distributions P(,B;,,Bj) we
recover the short-time solution Eq. (25),

f5(0) = a() J [1a28,P(8].8)75(0) = e %" as).
J

(30)

Another way of obtaining the same result is to use con-
cepts of probability theory. This may turn out to be useful in
other models of decoherence for which long-time solutions
for the reduced dynamics of the system are available [26].
Let us call x;=g,|3|* the stochastic variable that takes the
values x;=g;n; with probability P(nj)=(7rﬁj)‘1e‘”j/”/, where
n; is given by the Bose distribution. The mean value of x; is
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= . . o 22 2r /A2
a;=g;i=g{x;), and its variance is bj=(x;)—(x;*=g/[(ii})
—{i j)z]. The perturbative solution f4(¢) can then be written in
terms of these stochastic variables as

Sty = e, (31)

The stochastic variables x; can be considered as independent
and identically distributed. Therefore, the stochastic variable
Y EEj-V:lxj belongs to the class of the so-called infinitely di-
visible distributions [27-29]. The behavior of ¥ depends on
whether the cumulative variance vazE_ibjz» is finite or not. In
the limit N — o, B%, is finite (central limit theorem), and the
probability for Y is Gaussian

(32)

ey
P(y) = O y)]’

1
exp
\ 217312\, |: 2312\/

where y=2%;=%,¢n;). To obtain the reduced dynamics for
the system we need to integrate f(¢) over the environmental
variables B; weighted with their probability distributions.
This is equivalent to integrating e™™/* over its probability
distribution P(y),

+00
J dy iy P(y) = o (im)3t e-(B,zvﬂ)/(zﬁz). (33)

—00

Replacing the expression for y and the cumulative variance
B,z\,, we obtain our final expression for the reduced dynamics
for the coherent amplitude of the system

Fo(t) = e 2gmidong () (34)

which, again, coincides with the perturbative solution Eq.
(25).

For other models of decoherence, such as high tempera-
ture quantum Brownian motion, one can proceed along simi-
lar lines, i.e., solve the exact PDE for observables in a per-
turbative expansion in powers of the interaction Hamiltonian

H;,. It is possible to introduce an infinitely divisible distri-

PHYSICAL REVIEW A 73, 013803 (2006)

bution ¥ whose probability distribution is not Gaussian, but
given by a Levy distribution that leads to different time de-
pendencies of the decoherence factor. For example, for a
Lorentzian probability distribution one obtains an exponen-
tial decay [27-29].

IV. CONCLUSIONS

In this paper we have generalized the method of exact
partial differential equations for observable values of bosonic
systems [11,12], based on a coherent state representation, to
the case when the system interacts with a bosonic environ-
ment. Our method requires the solving, either exactly or ap-
proximately, of a PDE containing coupled coherent state de-
grees of freedom of the system and the environment, and
then to integrate (trace) over the environmental coherent
states weighted by their respective probability distributions.
We have exemplified the method with a model of a nonlinear
oscillator interacting via density with a bath of linear oscil-
lators. The simplicity of this model, based on the fact that all
terms in the Hamiltonian are simultaneously diagonal in the
number basis, allows for an exact solution. We demonstrated
that the dynamical behavior obtained from the coherent state
representation coincides with that obtained from the reduced
density matrix approach. Further development of our method
is required in order to treat other more complicated decoher-
ence models, such as a nonlinear oscillator coupled through
position to the environment. This will involve the study of
consistent perturbative solutions to the exact PDE for ob-
servables.
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